Exact algorithms for the rectilinear block packing problem
نویسندگان
چکیده
منابع مشابه
A Comparative Study of Exact Algorithms for the Two Dimensional Strip Packing Problem
In this paper we consider a two dimensional strip packing problem. The problem consists of packing a set of rectangular items in one strip of width W and infinite height. They must be packed without overlapping, parallel to the edge of the strip and we assume that the items are oriented, i.e. they cannot be rotated. To solve this problem, we use three exact methods: a branch and bound method, a...
متن کاملA Partition-based Heuristic Algorithm for the Rectilinear Block Packing Problem
This paper focuses on a two-dimensional strip packing problem where a set of arbitrarily shaped rectilinear blocks need be packed into a larger rectangular container without overlap. A rectilinear block is a polygonal block whose interior angles are either 90◦or 270◦. This problem involves many industrial applications, such as VLSI design, timber/glass cutting, and newspaper layout. We generali...
متن کاملHeuristic and exact algorithms for Generalized Bin Covering Problem
In this paper, we study the Generalized Bin Covering problem. For this problem an exact algorithm is introduced which can nd optimal solution for small scale instances. To nd a solution near optimal for large scale instances, a heuristic algorithm has been proposed. By computational experiments, the eciency of the heuristic algorithm is assessed.
متن کاملUnified Arbitrary Rectilinear Block Packing and Soft Block Packing Based on Sequence Pair
To the best of our knowledge, this is the first algorithm unifying arbitrary rectilinear block packing and soft block packing. Furthermore, this algorithm handles arbitrary convex or concave rectilinear block packing in the most efficient way compared to other sequence pair-based approaches. At the same time, the algorithm can handle rectangle soft block effectively. The concept of non-redundan...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Advanced Mechanical Design, Systems, and Manufacturing
سال: 2018
ISSN: 1881-3054
DOI: 10.1299/jamdsm.2018jamdsm0074